Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.more » « less
-
Abstract. This study investigates and compares soil moisture andhydrology projections of broadly used land models with permafrost processesand highlights the causes and impacts of permafrost zone soil moistureprojections. Climate models project warmer temperatures and increases inprecipitation (P) which will intensify evapotranspiration (ET) and runoff inland models. However, this study shows that most models project a long-termdrying of the surface soil (0–20 cm) for the permafrost region despiteincreases in the net air–surface water flux (P-ET). Drying is generallyexplained by infiltration of moisture to deeper soil layers as the activelayer deepens or permafrost thaws completely. Although most models agree ondrying, the projections vary strongly in magnitude and spatial pattern.Land models tend to agree with decadal runoff trends but underestimaterunoff volume when compared to gauge data across the major Arctic riverbasins, potentially indicating model structural limitations. Coordinatedefforts to address the ongoing challenges presented in this study will helpreduce uncertainty in our capability to predict the future Arctichydrological state and associated land–atmosphere biogeochemical processesacross spatial and temporal scales.more » « less
-
Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 = 0.76; Nash–Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r2 = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r2 = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r2 = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.more » « less
-
Abstract. Understanding and quantifying the global methane (CH4) budgetis important for assessing realistic pathways to mitigate climate change.Atmospheric emissions and concentrations of CH4 continue to increase,making CH4 the second most important human-influenced greenhouse gas interms of climate forcing, after carbon dioxide (CO2). The relativeimportance of CH4 compared to CO2 depends on its shorteratmospheric lifetime, stronger warming potential, and variations inatmospheric growth rate over the past decade, the causes of which are stilldebated. Two major challenges in reducing uncertainties in the atmosphericgrowth rate arise from the variety of geographically overlapping CH4sources and from the destruction of CH4 by short-lived hydroxylradicals (OH). To address these challenges, we have established aconsortium of multidisciplinary scientists under the umbrella of the GlobalCarbon Project to synthesize and stimulate new research aimed at improvingand regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paperdedicated to the decadal methane budget, integrating results of top-downstudies (atmospheric observations within an atmospheric inverse-modellingframework) and bottom-up estimates (including process-based models forestimating land surface emissions and atmospheric chemistry, inventories ofanthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated byatmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximumestimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or∼ 60 % is attributed to anthropogenic sources, that isemissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009),and 24 Tg CH4 yr−1 larger than the one reported in the previousbudget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4emissions have been tracking the warmest scenarios assessed by theIntergovernmental Panel on Climate Change. Bottom-up methods suggest almost30 % larger global emissions (737 Tg CH4 yr−1, range 594–881)than top-down inversion methods. Indeed, bottom-up estimates for naturalsources such as natural wetlands, other inland water systems, and geologicalsources are higher than top-down estimates. The atmospheric constraints onthe top-down budget suggest that at least some of these bottom-up emissionsare overestimated. The latitudinal distribution of atmosphericobservation-based emissions indicates a predominance of tropical emissions(∼ 65 % of the global budget, < 30∘ N)compared to mid-latitudes (∼ 30 %, 30–60∘ N)and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methanebudget is attributable to natural emissions, especially those from wetlandsand other inland waters. Some of our global source estimates are smaller than those in previouslypublished budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due toimproved partition wetlands and other inland waters. Emissions fromgeological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overalldiscrepancy between bottom-up and top-down estimates has been reduced byonly 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methanebudget include (i) a global, high-resolution map of water-saturated soilsand inundated areas emitting methane based on a robust classification ofdifferent types of emitting habitats; (ii) further development ofprocess-based models for inland-water emissions; (iii) intensification ofmethane observations at local scales (e.g., FLUXNET-CH4 measurements)and urban-scale monitoring to constrain bottom-up land surface models, andat regional scales (surface networks and satellites) to constrainatmospheric inversions; (iv) improvements of transport models and therepresentation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/orco-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded fromhttps://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from theGlobal Carbon Project.more » « less
An official website of the United States government
